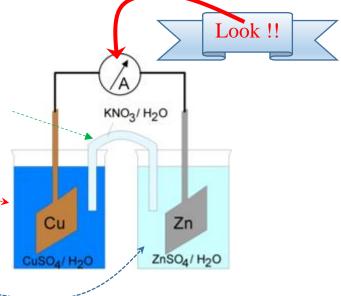

Une célèbre pile...

1800 **Alessandro Volta**

Imitation d'une cuisse de grenouille

1836 **John Daniell**

Stabiliser la source de courant (télégraphe)



Principe:

 K^+ ; NO_3^-

Solutions! $(Cu^{2+}; SO_4^{2+})$

 $(Zn^{2+};SO_4^{2+})$

Comment expliquer ce phénomène?

Constatations expérimentales

Electrode de Zinc rongée / Dépôt à l'électrode de cuivre

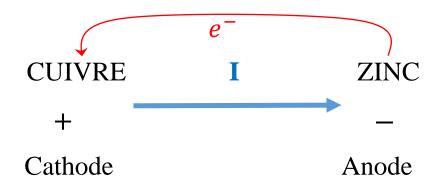
Analyse à l'échelle microscopique :

Lame de zinc : $Zn \rightarrow Z^{2+} + 2e^{-}$

Lame de cuivre : $Cu^{2+} + 2e^{-} \rightarrow Cu$

De beaux couples !!

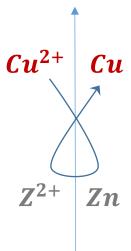
$$Cu^{2+}/Cu$$
 Z^{2+}/Zn


Ox / Red = Oxydant / Réducteur

Oxydant : il « vole » des e^-

Réducteur : il « donne » des e

Déplacement d'électrons = COURANT



Réactifs de départ : Cu^{2+} Zn

Produits à la fin : Cu Z^{2+}

Peut-on prévoir cela?

Classification des couples Ox / Red Règle du gamma

Réaction d'oxydoréduction

Zn est oxydé alors que Cu²⁺ est réduit

Demi-équations électroniques des couples

$$Cu^{2+}/Cu: Cu^{2+}+2e^- \rightleftharpoons Cu$$

$$Z^{2+}/Zn: Zn^{2+}+2e^- \rightleftharpoons Zn$$

On les ordonne dans le sens de la réaction :

$$egin{aligned} m{\mathcal{C}u^{2+}} + m{2}m{e^-} & m{\mathcal{C}u} \ + & m{Z}m{n} & m{\mathcal{Z}n^{2+}} + m{2}m{e^-} \end{aligned}$$

Equation bilan: $Cu^{2+} + Zn \rightarrow Cu + Zn^{2+}$

Traduction: 1 mole de Cu²⁺ avec 1 mole de Zn...

Quelle tension peut-on espérer obtenir?

Pas grand chose avec ça !!!

Conditions normalisées:

- Température
- Pression
- Concentrations des solutions

	E (V)	
Ox.	I	Red.
Air	1,50	Ан
Pt2+	1,00	Pt
Hg²⁺	0,86	Hg
Ag	- 0,80	Ag
Cu²+	0,34	Çu
H,	0,00	Ηz
₽b³+	0,13	Pb
Ni ^{2‡}	-0,23	Νï
Fe ²⁺	-0,44	Fe
Zn²⁺	-0,76	Ζn
Al³*	-1,66	Al
	•	

Classement des couples Ox / Red selon

leurs potentiels normaux E⁰:

Pile Daniell

$$E^{0}(Cu^{2+}/Cu) - E^{0}(Zn^{2+}/Zn) = 0.34 - (-0.76) = 1.1 \text{ V}$$

Cet anneau ne subira pas trop de corrosion!

Electrolyse: INVERSION de

la réaction naturelle

Ampèremètre ---- Source de tension

⇒ Recharge des batteries !!

Michael FARADAY (1791-1867)